

MATERIAL PROPER	RTIES			Free (Clamped) Dielectric Constant	e ved) tric Coupling ant Coefficients				Piezoelectric Charge Constants pm/V, or pC/N			Piezoelectric Cr Voltage Constants Temp mV•m/N			Curie Temperature, °C	Young's Planar ure, Modulus Poisson x10 ¹⁰ N/m2 ² Coefficient		Mechanical Quality Factor (@ 4 MHz)	Dissipation Factor (max., @1 kHz),%	issipation Factor (max., Frequency Constants 91 kHz),% Hz•m (kHz•in)		ıts	Density, 10 ³ kg/m ³	Sound Velocity under E=0, km/sec	Acoustic Impedance under E=0, MRayI	Thermal Coefficient of Expansion, 10 ⁻⁶ /°C
Applications	Ma	aterial	Compare with	\mathbf{K}^{T}_{3}	k 33	k ₁₅	k t	k p(k 31)	$\mathbf{d_{33}}(\mathbf{d_h})$	d 15	d 31	g ₃₃	g ₁₅	g ₃₁	Tc	Y_{33}^{E}	σ_{p}	Q _{m,t}	tanδ	Nt	Np	N 15	ρ	$V_{L}\left(V_{S}\right)$	ΖL	α
High temperature applications — ultrahigh temperature (up to 700°C) accelerometers, pressure, knock, flow and NDT transducers.	Bismuth Titanate	K-15		140 (133)	0.15	0.08	0.23	0.025 (0.015)	18 (14)	14	-2	15	10	-1.6	600	12	0.21	1800	3	2010 (79)	2515 (99)	1250 (49)	7.1	4.00 (2.50)	28	9
Very stable parameters under time, temperature and pressure variations, low acoustic impedance, low aging, and Q-factor. Used in flaw detectors, thickness gauges, accelerometers, HF hydrophones; and to measure acoustic emissions, pressure, knock, flow, level, and well logging under high pressure and temperature (up to 300°C). Its low dielectric constant coupled with a high frequency constant results in a lower capacitance for higher frequency driving and low acoustic impedance. Higher signal to noise ratio with low Q and low acoustic impedance.		K-81		300 (270)	0.33	0.25	0.33	0.04 (0.02)	85 (71)	95	-7	32	31	-2.6	460	5.5	0.19	20	1	1570 (62)	1970 (78)	940 (37)	6.2	3.10 (1.87)	19	1.3
	id Lead iobate	K-83		185 (150)	0.42	0.25	0.41	0.18 (0.12)	56 (26)	54	-15	34	22	-9	200	13	0.22	700	2	2690 (105)	3440 (135)	1700 (67)	4.6	5.42 (3.35)	24	1.5
	Modifii Metan	K- 85		800 (625)	0.47	0.39	0.43	0.19 (0.12)	200 (114)	210	-43	25	25	-6	300	4.6	0.19	20	2	1650 (65)	2120 (83)	990 (39)	5.7	3.40 (1.94)	19	1.6
		K-91		360 (310)	0.35	0.28	0.35	0.05 (0.03)	100 (79)	108	-11	31	108	-3.3	460	5.5	0.19	20	1.0	1540 (61)	1930 (76)	950 (37)	6.2	3.05 (1.88)	19	1.3
Shear and compressional resonance applications at medium to high frequencies, small diameter transducers, pulse-echo, NDT and imaging devices.		K-180	PZT-7A	425 (225)	0.68	0.68	0.53	0.52 (0.30)	165 (45)	350	-60	43	50	-15	350	7.1	0.30	700	3	2060 (81)	2390 (94)	1010 (40)	7.7	4.13 (1.96)	32	3.6
Low dielectric constant with high shear coupling and high temperature stability. Large diameter and/or high frequency, high nower radiators, such as sonar, medical therapy and HIEU		K-182	PZT-2	590 (330)	0.65	0.62	0.48	0.50 (0.23)	190 (30)	330	-80	37	48	-16	330	8.1	0.30	700	0.4	2180 (85)	2490 (98)	1050 (41)	7.6	4.23 (2.02)	34	3.1
Highly resistant to depoling under severe mechanical stress and electric drive, low dielectric losses at high electric fields. High power acoustic	ad te (PZT)	K-270	PZT-4, Navy I	1260 (650)	0.70	0.69	0.48	0.57 (0.33)	320 (80)	490	-120	29	36	-10	325	6.5	0.31	600	0.8	2010 (79)	2250 (87)	950 (37)	7.6	3.98 (1.85)	30	3.6
transducers, for ultrasonic cleaning, welding and sonar, high voltage generators, medical therapy and HIFU. K-300 excels in high power applications, where high sensitivity	Modified Le Zirconate-Titana	K-278	PZT-8, Navy III	1100 (650)	0.64	0.58	0.46	0.51 (0.30)	300 (100)	325	-100	29	30	-10	300	7.4	0.30	1000	0.4	2035 (80)	2320 (92)	970 (38)	7.6	3.99 (1.88)	30	3.6
high mechanical quality and low dissipation factors are required. Extremely high piezoactivity k ² Q under strong electrical and mechanical		K-300	PZT-4D	1500 (740)	0.71	0.70	0.49	0.56 (0.33)	320 (40)	490	-140	25	35	-11	300	5.5	0.33	900	0.4	2075 (81)	2280 (90)	950 (37)	7.7	4.08 (1.84)	31	6.8
Advanced high drive materials for high power transducers, small HIFU elements, imaging/therapy.		K-320		1450 (790)	0.67	0.67	0.50	0.54 (0.32)	320 (60)	470	-130	25	33	-10	275	5.5	0.31	1800	0.6	2100 (83)	2290 (90)	1010 (40)	7.8	4.12 (1.94)	32	6.8
K-320 is a PZT-4D and PZT-8 alternative that improves efficiency and conserves power.		K-340		3060 (1660)	0.67	0.65	0.47	0.54 (0.32)	430 (70)	630	-180	16	25	-7	180	5.5	0.32	900	0.4	2133 (84)	2300 (91)	954 (38)	7.7	3.95 (1.87)	31	6.8
Widely used for general purposes, hydrophones, accelerometers, level sensors, acoustic emission, pressure, flow, NDT, medical, knock, sonar, igniters.	Modified Lead Zirconate-Tilanate (PZT)	K-350	PZT-5A, Navy II	1750 (795)	0.72	0.67	0.50	0.61 (0.34)	390 (40)	570	-175	25	40	-11	360	5.4	0.41	140	2	1960 (77)	1997 (79)	950 (37)	7.7	3.92 (1.88)	30	3.6
K-500 has high dielectric constant and stable piezoelectric constants, similar to K-350, good for arrays and composites.		K-500	PZT-5J, Navy V	3000 (1200)	0.73	0.65	0.54	0.63 (0.37)	580 (140)	700	-220	21	31	-9	240	4.5	0.32	170	2	1940 (78)	2050 (81)	910 (36)	7.7	3.96 (1.76)	30	9.5
This material has high coupling and dielectric constants. Good for 1-3 composites, arrays, actuators, sensitive receivers and line hydrophone applications.		K-600	PZT-5H, Navy VI	3200 (1300)	0.74	0.68	0.54	0.65 (0.38)	650 (150)	730	-250	23	32	-9	220	5	0.31	160	2	1990 (78)	1963 (77)	920 (36)	7.7	3.98 (1.80)	31	9.5
Higher permittivity and piezoelectric constant make it an excellent choice for 1-3 composites, multi-element arrays, and actuator applications.		K-740		3850 (1750)	0.71	0.69	0.54	0.63 (0.37)	740 (160)	730	-290	21	27	-9	205	5	0.33	150	2	2010 (79)	2020 (79)	940 (37)	7.8	4.00 (1.84)	31	9
High frequency range transducers, for medical imaging, therapy, HIFU, and NDT—where low losses and high piezoelectric anisotropy are critical.	РТ	Nova 3B		205 (148)	0.51	0.37	0.51	0.05 (0.03)	61 (54)	78	-3.5	34	35	-2	350	12	0.20	1700	1.5	2135 (84)	2710 (107)	1360 (54)	7.6	4.19 (2.71)	32	along: polar.+ planar-

3. Typical tolerances ± 20% for dielectric constant, ± 10% for piezoelectric coefficients, and ± 10% for elastic frequency constants under normal conditions and low excitation level.
4. The sign of thermal expansion depends on polarization direction. Specific heat capacity ~ 350 J/kg-K. Thermal conductivity ~ 1 W/m-K. Pyroelectric coefficient ~ 10 µC/m²-K.
5. Resonance characteristics of low Q < 25 materials were determined with loss correction procedure. Data for d33 piezocoefficient determined by quasi-static method.

Headquarters, Manufacturing & Product Development 8431 Georgetown Rd, Suite 300 Indianapolis, IN 46268 Tel: (317) 876-4670